Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.903
Filtrar
1.
Org Lett ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661476

RESUMEN

A novel ion exchange strategy has been developed to enable the asymmetric construction of axially chiral sulfone-containing styrenes. This approach provides a practical synthesis pathway for various axially chiral sulfone-containing styrenes with good yields, exceptional enantioselectivities, and nearly complete E/Z selectivities. Additionally, the reaction mechanism is elucidated in detail through density functional theory (DFT) calculations.

2.
Exp Cell Res ; : 114056, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663475

RESUMEN

It was reported that within the head and neck cancer (HNC) cell line CAL21 the epithelial-mesenchymal transition (EMT) and cell proliferation were promoted by Urokinase-Type Plasminogen Activator (PLAU) proteinase through TNFRSF12A. Additionally, in this paper HNC cell lines refer to Fadu and Tu686. A novel PLAU-STAT3 axis was found to be involved in HNC cell line proliferation and metastasis. PLAU expression in HNC samples was upregulated, besides, the elevated expression of PLAU was linked to the lower overall survival (OS) and disease-free survival (DFS). Ectopic PLAU expression promoted cell proliferation and migration, while PLAU knockdown exhibited opposite results. RNA-seq data identified the JAK-STAT signaling pathway, confirmed by western blotting. A recovery assay using S3I-201, a selective inhibitor of signal transducer and activator of transcription 3 (STAT3), indicated that PLAU promoted HNC cell line progression via STAT3 signaling in vitro. The oncogenic role of PLAU in HNC tumor growth in vivo was confirmed using xenograft models. In summary, we identified the tumorigenic PLAU function in the HNC progress. PLAU may represent a potential prognostic biomarker of HNC and the PLAU-STAT3 pathway might be considered a therapeutic target of HNC.

3.
Food Chem X ; 22: 101390, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665630

RESUMEN

This work investigated and compared the structural and emulsifying properties of peanut globulin fractions (conarachin and arachin) after ultrasonication (US) and pH2.5-shifting treatments, singly and in combination. Results showed that pH2.5-shifting was more effective in degrading peanut protein subunits and unfolding their structures than US treatment. Conarachin tended to aggregate during US and pH2.5-shifting treatments possibly due to higher free sulfhydryl content, while high molecular weight arachin tended to disaggregate during these treatments. pH2.5-shifting or US+pH2.5-shifting treatments significantly increased the surface hydrophobicity of conarachin (from 72 to 314) and arachin (from 336 to 888), which may be responsible for the enhancement of protein emulsifying activity. All treatments significantly improved the physical stability of arachin-stabilized emulsions with higher absolute potentials but lowered that of conarachin-stabilized emulsions. However, pH2.5-shifting or US+pH2.5-shifting treatments could improve the stability of conarachin-stabilized emulsions in the presence of salts.

4.
Adv Mater ; : e2400737, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572792

RESUMEN

Electrode crosstalk between anode and cathode at elevated temperatures is identified as a real culprit triggering the thermal runaway of lithium-ion batteries. Herein, to address this challenge, a novel smart polymer electrolyte is prepared through in situ polymerization of methyl methacrylate and acrylic anhydride monomers within a succinonitrile-based dual-anion deep eutectic solvent. Owing to the abundant active unsaturated double bonds on the as-obtained polymer matrix end, this smart polymer electrolyte can spontaneously form a dense crosslinked polymer network under elevated temperatures, effectively slowing down the crosstalk diffusion kinetics of lithium ions and active gases. Impressively, LiCoO2/graphite pouch cells employing this smart polymer electrolyte demonstrate no thermal runaway even at the temperature up to 250 °C via accelerating rate calorimeter testing. Meanwhile, because of its abundance of functional motifs, this smart polymer electrolyte can facilitate the formation of stable and thermally robust electrode/electrolyte interface on both electrodes, ensuring the long cycle life and high safety of LIBs. In specific, this smart polymer electrolyte endows 1.1 Ah LiCoO2/graphite pouch cell with a capacity retention of 96% after 398 cycles at 0.2 C.

5.
Opt Express ; 32(7): 11134-11149, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570969

RESUMEN

This research addressed the drawbacks of the conventional hybrid structure and processing technique by presenting a novel distributed fiber optic sensor based on a hybrid Michelson and Mach-Zehnder interferometer. The sensor can achieve blind spot free positioning and has a wide response frequency, additionally its structure is not complex. It can obtain two phase signals from each of the two interferometers by using a demodulation method that uses a 3 × 3 optical coupler. To determine the position of the disturbance, we computed cross-correlations on the two signals following basic mathematical techniques. Markov Transition Field was used to transform the phase signals-which had been filtered by a band pass filter-into two-dimensional images. Tagged photos built a dataset, which is then fed into a neural network to identify patterns. Experiments have shown that the frequency response capacity of the structure was verified, and it was able to achieve location within 0-30 km with location errors of ±85 m. In a six-category pattern recognition, the testing set accuracy was 98.74%.

6.
Int J Biol Macromol ; 266(Pt 2): 131289, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570002

RESUMEN

Intranasal vaccination offers crucial protection against influenza virus pandemics. However, antigens, especially subunit antigens, often fail to induce effective immune responses without the help of immune adjuvants. Our research has demonstrated that a polyelectrolyte complex, composed of curdlan sulfate/O-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (CS/O-HTCC), effectively triggers both mucosal and systemic immune responses when administrated intranasal. In this study, stable nanoparticles formed by curdlan-O-HTCC conjugate (CO NP) were prepared and characterized. Furthermore, the efficacy of CO NP was evaluated as a mucosal adjuvant in an intranasal influenza H1N1 subunit vaccine. The results revealed that CO NP exhibits uniform and spherical morphology, with a size of 190.53 ± 4.22 nm, and notably, it remains stable in PBS at 4 °C for up to 6 weeks. Biological evaluation demonstrated that CO NP stimulates the activation of antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), both in vitro and in vivo. Furthermore, intranasal administration of CO NP effectively elicits cellular and humoral immune responses, notably enhancing mucosal immunity. Thus, CO NP emerges as a promising mucosal adjuvant for influenza subunit vaccines.

7.
Heliyon ; 10(7): e28304, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571656

RESUMEN

Background: The aim of this study was to assess whether intravenous dexamethasone was noninferior to perineural dexamethasone as an adjuvant to ropivacaine for a combination of saphenous and sciatic nerve blocks in patients undergoing foot and ankle surgery. Methods: This was a prospective, blinded, randomized noninferiority study. Seventy-five patients, aged 18-75 years, with an American Society of Anesthesiologists (ASA) physical status I-III who underwent foot and ankle surgery were involved. Patients scheduled for ultrasound-guided popliteal sciatic nerve block and saphenous nerve block were randomized to receive 0.375% ropivacaine with 7.5 mg of dexamethasone perineurally (Dex-PN), 10 mg of dexamethasone intravenously (Dex-IV) or neither (Placebo). The primary outcome was the duration of analgesia. The major secondary outcomes were the composite pain intensity and opioid consumption score at 0-48 h intervals after anesthesia. Results: The mean analgesic duration was 26.2 h in the Dex-IV group and 27.9 h in the Dex-PN group (duration difference, -1.7; 95% CI, -3.8 to 0.43; P = 0.117), and both durations were significantly longer than that in the placebo group (17.6 h, P < 0.001). Conditions for establishing non-inferiority were met. Conclusions: Our findings indicate that a single 10-mg intravenous dose of dexamethasone was noninferior to the combined dose of ropivacaine plus deaxmethasone in terms of duration of analgesia for foot and ankle surgery.

8.
Front Pharmacol ; 15: 1285797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572426

RESUMEN

Background: In recent years, diabetic kidney disease (DKD) has emerged as a prominent factor contributing to end-stage renal disease. Tubulointerstitial inflammation and lipid accumulation have been identified as key factors in the development of DKD. Earlier research indicated that Astragaloside IV (AS-IV) reduces inflammation and oxidative stress, controls lipid accumulation, and provides protection to the kidneys. Nevertheless, the mechanisms responsible for its protective effects against DKD have not yet been completely elucidated. Purpose: The primary objective of this research was to examine the protective properties of AS-IV against DKD and investigate the underlying mechanism, which involves CD36, reactive oxygen species (ROS), NLR family pyrin domain containing 3 (NLRP3), and interleukin-1ß (IL-1ß). Methods: The DKD rat model was created by administering streptozotocin along with a high-fat diet. Subsequently, the DKD rats and palmitic acid (PA)-induced HK-2 cells were treated with AS-IV. Atorvastatin was used as the positive control. To assess the therapeutic effects of AS-IV on DKD, various tests including blood sugar levels, the lipid profile, renal function, and histopathological examinations were conducted. The levels of CD36, ROS, NLRP3, Caspase-1, and IL-1ß were detected using western blot analysis, PCR, and flow cytometry. Furthermore, adenovirus-mediated CD36 overexpression was applied to explore the underlying mechanisms through in vitro experiments. Results: In vivo experiments demonstrated that AS-IV significantly reduced hyperglycemia, dyslipidemia, urinary albumin excretion, and serum creatinine levels in DKD rats. Additionally, it improved renal structural abnormalities and suppressed the expression of CD36, NLRP3, IL-1ß, TNF-α, and MCP-1. In vitro experiments showed that AS-IV decreased CD36 expression, lipid accumulation, and lipid ROS production while inhibiting NLRP3 activation and IL-1ß secretion in PA-induced HK-2 cells. Conclusion: AS-IV alleviated renal tubule interstitial inflammation and tubule epithelial cell apoptosis in DKD rats by inhibiting CD36-mediated lipid accumulation and NLRP3 inflammasome activation.

9.
Front Cell Dev Biol ; 12: 1357370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577504

RESUMEN

As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.

10.
Adv Sci (Weinh) ; : e2401536, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582502

RESUMEN

Rechargeable magnesium batteries (RMBs) have garnered significant attention due to their potential to provide high energy density, utilize earth-abundant raw materials, and employ metal anode safely. Currently, the lack of applicable cathode materials has become one of the bottleneck issues for fully exploiting the technological advantages of RMBs. Recent studies on Mg cathodes reveal divergent storage performance depending on the electrolyte formulation, posing interfacial issues as a previously overlooked challenge. This minireview begins with an introduction of representative cathode-electrolyte interfacial phenomena in RMBs, elaborating on the unique solvation behavior of Mg2+, which lays the foundation for interfacial chemistries. It is followed by presenting recently developed strategies targeting the promotion of Mg2+ desolvation in the electrolyte and alternative cointercalation approaches to circumvent the desolvation step. In addition, efforts to enhance the cathode-electrolyte compatibility via electrolyte development and interfacial engineering are highlighted. Based on the abovementioned discussions, this minireview finally puts forward perspectives and challenges on the establishment of a stable interface and fast interfacial chemistry for RMBs.

11.
Angew Chem Int Ed Engl ; : e202402139, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563765

RESUMEN

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.

12.
J Stroke Cerebrovasc Dis ; : 107731, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657831

RESUMEN

BACKGROUND: Several studies report that radiomics provides additional information for predicting hematoma expansion in intracerebral hemorrhage (ICH). However, the comparison of diagnostic performance of radiomics for predicting revised hematoma expansion (RHE) remains unclear. METHODS: The cohort comprised 312 consecutive patients with ICH. A total of 1106 radiomics features from seven categories were extracted using Python software. Support vector machines achieved the best performance in both the training and validation datasets. Clinical factors models were constructed to predict RHE. Receiver operating characteristic curve analysis was used to assess the abilities of non-contrast computed tomography (NCCT) signs, radiomics features, and combined models to predict RHE. RESULTS: We finally selected the top 21 features for predicting RHE. After univariate analysis, 4 clinical factors and 5 NCCT signs were selected for inclusion in the prediction models. In the training and validation dataset, radiomics features had a higher predictive value for RHE (AUC = 0.83) than a single NCCT sign and expansion-prone hematoma. The combined prediction model including radiomics features, clinical factors, and NCCT signs achieved higher predictive performances for RHE (AUC = 0.88) than other combined models. CONCLUSIONS: NCCT radiomics features have a good degree of discrimination for predicting RHE in ICH patients. Combined prediction models that include quantitative imaging significantly improve the prediction of RHE, which may assist in the risk stratification of ICH patients for anti-expansion treatments.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38660904

RESUMEN

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Asunto(s)
Animales Recién Nacidos , Trasplante de Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Cordón Umbilical , Sustancia Blanca , Animales , Ratas , Humanos , Cordón Umbilical/citología , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/análisis , Células Madre Mesenquimatosas , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/análisis , Proteína Básica de Mielina/metabolismo , Masculino , Apoptosis , Femenino , ARN Mensajero/análisis , ARN Mensajero/metabolismo
14.
Waste Manag ; 182: 142-163, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653043

RESUMEN

Owing to the diversity of biomasses and many variables in pyrolysis process, the property of biochar from varied biomass feedstock or even same biomass could differ significantly. Since the property of biochar governs the further application of biochar, this review paid particular attention to the correlation between the nature of biomass feedstock and the specifications of biochar in terms of yield, elemental composition, pH, functionalities, heating value, pore structures, morphologies, etc. The property of the biochar from the pyrolysis of cellulose, hemicellulose, lignin, woody biomass (pine, mallee, poplar, acacia, oak, eucalyptus and beech), bark of woody biomass, leaves of woody biomass, straw, algae, fruit peels, tea waste was compared and summarized. In addition, the differences of the biochar of these varied origins were also analyzed. The remaining questions, about the correlation of biomass nature with biochar characteristics, to be further investigated are analyzed in detail. The deduced information about the relationship of the nature of biochar and biomass feedstock as well as key pyrolysis parameters is of importance for further development of the methods for tailoring or production of the biochar of desirable properties. The results from this study could be interesting technically and commercially for the technology developer using biochar as the source of carbon in different applications.

15.
J Colloid Interface Sci ; 667: 503-509, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38653071

RESUMEN

How to construct a new electrode/electrolyte interface structure in solid-state batteries (SSBs), enhance interface stability, and improve the cycling performance of SSBs is a great challenge for the development of SSBs. Here, an all-in-one "interface-free" structure was developed. This interfacial structure constructs a full-interface hydrogen bonding network through the abundant hydrogen bond donors and acceptors in the cathode and electrolyte to enhance the interfacial stability and avoid interfacial failure during charging and discharging, and generates cathode-electrolyte interface (CEI) in-situ to effectively regulate zinc ion transport. Square cells assembled in this structure are stabilized for 100 cycles at a current density of 0.1 mA cm-2. This integrated electrode provides a new idea for the long stable cycle of SSBs.

16.
Immun Inflamm Dis ; 12(4): e1251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607251

RESUMEN

BACKGROUND: For a long time, the prevailing viewpoint suggests that shorter telomere contribute to chromosomal instability, which is a shared characteristic of both aging and cancer. The newest research presented that T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to some cancers. However, the relationship between genetically determined telomere length (TL) and immune cells remains unclear. METHODS: The two-sample Mendelian randomization analysis was conducted to elucidate the potential causal relationship. The genetic data of TL and immune cells were obtained from the Genome-Wide Association Study. The inverse variance weighted (IVW) method was used to estimate the effects primarily and another four methods were as a supplement. Sensitivity analysis was used to test the results. RESULTS: The IVW method showed a significant correlation between TL and the percentage of T cells in lymphocytes (odds ratio [OR]: 1.222, 95% confidence interval [CI]: 1.014-1.472, p = .035), indicating that shorter TL significantly increases the risk of low T cell percentage. Further analysis of T cell subsets indicated that shorter TL may primarily lead to a lower percentage of Natural Killer T cells (OR: 1.574, 95% CI: 1.281-1.935, p < .001). Analysis of B cell subsets revealed that shorter TL may be associated with a higher percentage of Naive-mature B cells, and a lower percentage of Memory B cells. And the sensitivity analysis indicated the validity and robustness of our findings. CONCLUSION: In summary, our findings suggest that shorter TL may be associated with a decline in the percentage of T cell, as well as impediments in the differentiation of B cell, consequently leading to the onset of immunosenescence and immunodeficiency. The relevant mechanisms and potential therapeutic avenues still need further investigation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos del Crecimiento , Hipercalcemia , Síndromes de Inmunodeficiencia , Enfermedades Metabólicas , Nefrocalcinosis , Timo/anomalías , Humanos , Análisis de la Aleatorización Mendeliana , Linfocitos
17.
ACS Nano ; 18(16): 10930-10945, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38604994

RESUMEN

Rechargeable alkali metal-CO2 batteries, which combine high theoretical energy density and environmentally friendly CO2 fixation ability, have attracted worldwide attention. Unfortunately, their electrochemical performances are usually inferior for practical applications. Aiming to reveal the underlying causes, a combinatorial usage of advanced nondestructive and postmortem characterization tools is used to intensively study the failure mechanisms of Li/Na-CO2 batteries. It is found that a porous interphase layer is formed between the separator and the Li/Na anode during the overvoltage rising and battery performance decaying process. A series of control experiments are designed to identify the underlying mechanisms dictating the observed morphological evolution of Li/Na anodes, and it is found that the CO2 synergist facilitates Li/Na chemical corrosion, the process of which is further promoted by the unwanted galvanic corrosion and the electrochemical cycling conditions. A detailed compositional analysis reveals that the as-formed interphase layers under different conditions are similar in species, with the main differences being their inconsistent quantity. Theoretical calculation results not only suggest an inherent intermolecular affinity between the CO2 and the electrolyte solvent but also provide the most thermodynamically favored CO2 reaction pathways. Based on these results, important implications for the further development of rechargeable alkali metal-CO2 batteries are discussed. The current discoveries not only fundamentally enrich our knowledge of the failure mechanisms of rechargeable alkali metal-CO2 batteries but also provide mechanistic directions for protecting metal anodes to build high-reversible alkali metal-CO2 batteries.

18.
World J Gastroenterol ; 30(10): 1420-1430, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38596496

RESUMEN

BACKGROUND: Various animal models have been used to explore the pathogenesis of choledochal cysts (CCs), but with little convincing results. Current surgical techniques can achieve satisfactory outcomes for treatment of CCs. Consequently, recent studies have focused more on clinical issues rather than basic research. Therefore, we need appropriate animal models to further basic research. AIM: To establish an appropriate animal model that may contribute to the investigation of the pathogenesis of CCs. METHODS: Eighty-four specific pathogen-free female Sprague-Dawley rats were randomly allocated to a surgical group, sham surgical group, or control group. A rat model of CC was established by partial ligation of the bile duct. The reliability of the model was confirmed by measurements of serum biochemical indices, morphology of common bile ducts of the rats as well as molecular biology experiments in rat and human tissues. RESULTS: Dilation classified as mild (diameter, ≥ 1 mm to < 3 mm), moderate (≥ 3 mm to < 10 mm), and severe (≥ 10 mm) was observed in 17, 17, and 2 rats in the surgical group, respectively, while no dilation was observed in the control and sham surgical groups. Serum levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, and total bile acids were significantly elevated in the surgical group as compared to the control group 7 d after surgery, while direct bilirubin, total bilirubin, and gamma-glutamyltransferase were further increased 14 d after surgery. Most of the biochemical indices gradually decreased to normal ranges 28 d after surgery. The protein expression trend of signal transducer and activator of transcription 3 in rat model was consistent with the human CC tissues. CONCLUSION: The model of partial ligation of the bile duct of juvenile rats could morphologically simulate the cystic or fusiform CC, which may contribute to investigating the pathogenesis of CC.


Asunto(s)
Quiste del Colédoco , Humanos , Femenino , Ratas , Animales , Quiste del Colédoco/cirugía , Reproducibilidad de los Resultados , Ratas Sprague-Dawley , Modelos Animales , Dilatación Patológica , Bilirrubina , Modelos Animales de Enfermedad
19.
Mol Biol Rep ; 51(1): 497, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598010

RESUMEN

Helicobacter pylori (H. pylori) is a gram-negative bacteria with a worldwide infection rate of 50%, known to induce gastritis, ulcers and gastric cancer. The interplay between H. pylori and immune cells within the gastric mucosa is pivotal in the pathogenesis of H. pylori-related disease. Following H. pylori infection, there is an observed increase in gastric mucosal macrophages, which are associated with the progression of gastritis. H. pylori elicits macrophage polarization, releases cytokines, reactive oxygen species (ROS) and nitric oxide (NO) to promote inflammatory response and eliminate H. pylori. Meanwhile, H. pylori has developed mechanisms to evade the host immune response in order to maintain the persistent infection, including interference with macrophage phagocytosis and antigen presentation, as well as induction of macrophage apoptosis. Consequently, the interaction between H. pylori and macrophages can significantly impact the progression, pathogenesis, and resolution of H. pylori infection. Moreover, macrophages are emerging as potential therapeutic targets for H. pylori-associated gastritis. Therefore, elucidating the involvement of macrophages in H. pylori infection may provide novel insights into the pathogenesis, progression, and management of H. pylori-related disease.


Asunto(s)
Gastritis , Helicobacter pylori , Humanos , Macrófagos , Fagocitosis , Apoptosis
20.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591083

RESUMEN

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...